热交换器能效测试与评价规则

Energy Efficiency Test and Evaluation Regulation for Heat Exchanger

国家市场监督管理总局颁布 2019年1月15日

前 言

2016 年 7 月,原国家质量监督检验检疫总局(以下简称原国家质检总局)特种设备安全监察局(以下简称特种设备局)委托中国特种设备检测研究院(以下简称中国特检院)组织起草《热交换器能效测试与评价规则》(以下简称《规则》)。2016 年 7 月,中国特检院组织成立了起草组,在西安召开第一次工作会议,讨论了《规则》的制定原则、重点内容以及主要问题、结构(章节)框架,并且就起草工作进行了具体分工,制定了起草工作时间表。2016 年 9 月,起草组在上海召开第二次工作会议,对《规则》内容进行了调整,形成了《规则》征求意见稿。2016 年 12 月,特种设备局对征求意见稿进行审查后,以质检特函〔2016〕59 号文对外征求有关部门、有关单位、专家及公民的意见。2017 年 3 月,起草组根据征求到的修改意见和建议对征求意见稿进行修改形成送审稿,提交原国家质检总局特种设备安全与节能技术委员会审议,起草组根据审议意见进行修改后形成报批稿,2019 年 1 月 15 日,由国家市场监督管理总局批准颁布。

本规则主要起草单位和人员如下:

国家市场监督管理总局

甘肃蓝科石化高新装备股份有限公司 张延丰 周文学 西安交通大学 白博峰 中国特种设备检测研究院 管 坚 齐国利 刘雪敏 王中伟 中国特种设备安全与节能促进会 王为国 上海市特种设备监督检验技术研究院 汤晓英 严勇 甘肃省质量技术监督局 中国石化工程建设有限公司 张迎恺 中国石油化工股份有限公司上海高桥分公司 蔡隆展 上海蓝海科创检测有限公司 王纪兵 宁波市特种设备检验研究院 竺国荣 蒋 磊 江西省锅炉压力容器检验检测研究院 夏健 睿能太宇(沈阳)能源技术有限公司 陈 枫 上海板换机械设备有限公司 张永德

冷浩

郝

刚

目 录

1	总则		(1)
2	一般	要求	(3)
3	附则		(4)
附	件 A	板式热交换器能效测试与评价方法及能效指标	(5)
附	件 B	板式热交换器能效测试与评价报告(1	11)

热交换器能效测试与评价规则

1 总 则

1.1 目的

为规范热交换器能效测试与评价工作,根据《中华人民共和国特种设备安全法》《特种设备安全监察条例》,制定本规则。

1.2 适用范围

本规则适用于在液—液工况状态下的可拆卸板式热交换器、半焊式板式热交换器、钎焊板式热交换器产品的能效测试与评价,对其他类型热交换器的能效测试与评价方法将在研究确定后予以补充。

在用热交换器的能效测试与评价可参照本规则。

1.3 引用标准

本规则的引用标准如下:

- (1) GB/T 151 热交换器;
- (2) GB/T 27698 热交换器及传热元件性能测试方法;
- (3) NB/T 47004.1 板式热交换器 第1部分:可拆卸板式热交换器;
- (4) NB/T 47045 钎焊板式热交换器。

注 1-1: 凡是注日期的引用标准, 其版本适用于本规则。凡是不注日期的引用标准, 其最新版本(包括所有的修改单)适用于本规则。

1.4 术语和定义

GB/T 151、GB/T 27698、NB/T 47004.1、NB/T 47045 中界定的术语、定义以及下列术语、符号和定义适用于本规则。

1.4.1 能效指标

综合考虑热交换器的传热与流动特性,基于热力学第一、第二定律,采用测试数据数理统计等方法确定的用于判定热交换器能效的参数。

1.4.1.1 能效指标目标值

判定热交换器为高效产品的能效值,对应产品能效等级中的1级。

1.4.1.2 能效指标限定值

允许的热交换器产品的最低能效值,对应产品能效等级中的3级。

1.4.2 热平衡条件

热交换器能效测试达到热平衡时,冷、热流体换热量的允许偏差范围。

1.5 符号和单位

表1列出的符号和单位适合于本规则。

表 1 符号和单位

	• •	14 2 Just 1 172
符号	名 称	单 位
A	传热面积	m ²
$c_{ m p}$	比定压热容	$J \cdot kg^{-1} \cdot K^{-1}$
$d_{ m e}$	当量直径	m
Eu	欧拉数	1
k	总传热系数	W·m ⁻² ·K ⁻¹
L	流体流动长度	m
Nu	努塞尔数	1
p	压力	Pa, kPa, MPa
ho	密度	kg·m ⁻³
Pr	普朗特数	1
$q_{ m \scriptscriptstyle V}$	体积流量	$\text{m}^3 \cdot \text{s}^{-1}$
$q_{ m m}$	质量流量	$ m kg\cdot s^{-1}$
Re	雷诺数	1
S	流道截面积	m ²
t	温度	${\mathbb C}$
и	流速	$\mathbf{m} {\cdot} \mathbf{s}^{-1}$
α	对流换热系数	$W \cdot m^{-2} \cdot K^{-1}$
η	动力粘度	Pa·s
δ	厚度	m
λ	热导率	$W \cdot m^{-1} \cdot K^{-1}$
Φ	热流量	W
$\Delta \phi$	热平衡相对误差	1
Δt_1	大温差端的流体温差	$^{\circ}$
Δt_2	小温差端的流体温差	$^{\circ}$
$\Delta t_{ m m}$	对数平均温差	$^{\circ}$

2 一般要求

2.1 测试评价机构

从事热交换器能效测试评价的机构(以下简称测试机构),应当具备热交换器能效测试与评价的能力,配备满足热交换器能效测试与评价的仪器设备和人员,严格控制能效测试质量,对测试结果的准确性、公正性和可溯源性负责。

2.2 测试系统

- (1) 具备固定的测试试验场地及配套的水、电、气、热源和冷源等条件;
- (2)满足热交换器热力性能参数测量范围的能力要求,测试工况可以调节并且能保持稳定状态,测试数据准确可靠并且能自动采集和存储。

2.3 测量仪表

- (1)压力、压力差测量仪表的精度不低于 0.2 级,流量测量仪表的精度不低于 0.5 级,流体温度测量仪表的允差值不超过±0.5℃;
 - (2)测量仪表应当在检定(校准)有效期内使用。
 - 2.4 测试与评价方法
 - 2.4.1 测试要求

测试按照 GB/T 27698 及附件 A 进行, 并且符合以下要求:

- (1)每个测试工况应当稳定 5min 以上,并且热平衡相对误差 $\Delta \phi$ 的绝对值不大于 5% 时,方可进行数据采集;
 - (2)每个测试工况至少重复测量 3 次,每次间隔 5min 以上,测量结果取平均值。
 - 2.4.2 评价方法

以能效指标作为依据,评价热交换器的能效水平。

2.4.3 典型热交换器的能效测试与评价方法及能效指标 板式热交换器的能效测试与评价方法及能效指标见附件 A。

2.4.4 其他要求

当热交换器产品型号或者主要结构参数发生变化时,应当重新进行能效测试与 评价。

2.5 测试与评价报告

热交换器的测试与评价报告格式见附件 B, 并且至少包括以下内容:

(1)委托单位信息;

- (2)产品制造单位信息及产品编号;
- (3)测试与评价机构信息;
- (4)测试评价工作负责人和主要参加人员;
- (5)测试产品技术数据(名称、型号、结构参数等);
- (6)测试环境条件(当地大气压、环境温度、环境湿度);
- (7)测试用冷、热两侧的流体介质;
- (8)测量参数与测点布置图(冷、热两侧流体的流量,进、出口温度与压力差,进口压力);
 - (9)测量仪表及精度;
 - (10)测试数据表;
 - (11)测试曲线;
 - (12)能效指标计算过程;
 - (13)能效评价结果及等级。

3 附 4则

3.1 解释权限

本规则由国家市场监督管理总局负责解释。

3.2 施行时间

本规则自2019年6月1日起施行。

附件A

板式热交换器能效测试与评价方法及能效指标

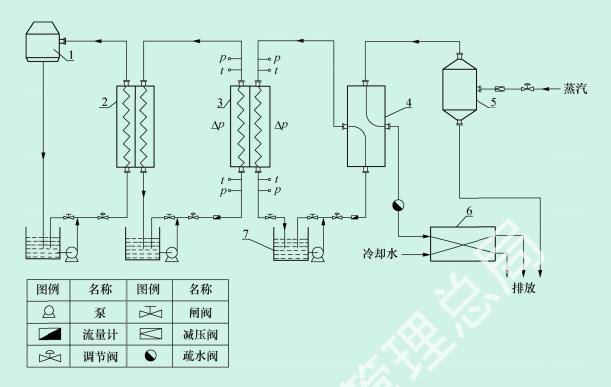
A1 范围

本附件适用于在液一液工况状态下的可拆卸板式热交换器、半焊式板式热交换器、钎焊板式热交换器的能效测试与评价。

A2 产品型号及参数

测试与评价板式热交换器的能效时应当明确产品型号及以下参数:

- (1)板片波纹形式 (波纹角度、波纹深度、波纹间距、混合角度);
- (2) 板片几何尺寸(长度、宽度、角孔直径、纵向与横向中心距);
- (3)单板传热面积;
- (4) 板间距;
- (5) 板片厚度;
- (6) 板片材料;
- (7)流道截面积;
- (8) 板片数:
- (9) 流程组合;
- (10)设计温度;
- (11)设计压力。


当产品型号或者前款(1)至(5)任一参数发生变化时,应当重新进行能效测试与评价。

A3 性能测试要求

A3.1 测试系统设置

测试系统见图 A-1。测试流体为水,按照水一水无相变逆流测试工况进行。首先将冷、热流体的流量调整到设定值,再将热交换器的热流体进口温度通过加热器调整至 (60 ± 1) \mathbb{C} , 热交换器的冷流体进口温度通过冷却器调整至 (30 ± 1) \mathbb{C} 。

所测试板式热交换器的板片数不少于 7 片。

1—冷却塔,2—冷却器,3—热交换器试件,4—加热器,5—分离器,6—过冷器,7—液体储槽,*t*—温度测口,*p*—压力测口

图 A-1 热交换器测量参数及测点布置图

A3.2 测量项目

- (1)冷、热流体的体积流量或质量流量;
- (2)冷、热流体的进、出口温度;
- (3)冷、热流体的进口压力及进、出口之间的压力差。

A3.3 测试方法

测试工况稳定后,按照以下要求进行测试:

- (1)两侧流体的流速从 0.1m·s^{-1} 到 1.0m·s^{-1} 均匀等流速变化,变化间隔为 0.1m·s^{-1} ;
- (2)固定一侧(热侧或冷侧)流体的流速不变,固定点宜选在 0.5m·s^{-1} ,另一侧流体的流速应当从 0.1m·s^{-1} 到 1.0m·s^{-1} 变化,变化间隔为 0.1m·s^{-1} 。

A3.4 热平衡条件

A3.4.1 计算步骤

冷、热流体的换热量允许偏差范围,根据冷、热流体流速为 0.5m·s⁻¹ 时的测试结果确定,计算步骤如下:

- (1)按照表 A-1 计算热交换器冷、热流体进口温度比τ;
- (2)按照表 A-1 计算效能 ε ;

(3)计算热平衡条件的下界 $\Delta \phi_c$, 计算见式 (A-1):

$$\Delta \phi_c = -(1-\tau) (1-\varepsilon) \tag{A-1}$$

A3. 4. 2 热平衡范围

根据式(A-1)的计算结果,按照以下条件确定该热交换器能效测试允许的 热平衡范围:

- (1) 如果 $\Delta \phi_c \leq -5\%$, 热平衡条件允许范围为-5% $\leq \Delta \phi \leq 5\%$;
- (2) 如果 $-5\% < \Delta \phi_c \le -1\%$, 热平衡条件允许范围为 $\Delta \phi_c \le \Delta \phi \le 5\%$;
- (3) 如果 $\Delta \phi$ > -1%, 热平衡条件允许范围为-1% $\leq \Delta \phi \leq 5\%$ 。

A3.5 热交换器传热性能

按照表 A-1 有关量计算式, 计算热交换器传热性能, 并且得出以下结果:

- (1)确定不同流速 u 下的总传热系数 k_{exp} ;
- (2)给出总传热系数 kexp 与流速 u 的关系曲线;
- (3) 建立努塞尔数 Nu 与雷诺数 Re 间的准则关联式。

A3.6 热交换器流动阻力性能

按照表 A-1 有关量计算式,计算热交换器流动阻力性能,并且得出以下结果:

- (1)确定不同流速 u 下的压力降 Δp ;
- (2)给出压力降 Δp 与流速u的关系曲线;
- (3) 建立欧拉数 Eu 与雷诺数 Re 间的准则关联式。

1 冷流体流速 u_c $u_c = q_{vc}/S_c$ 2 热流体流速 u_h $u_h = q_{vh}/S_h$ 3 冷、热流体进口温度比 τ $\tau = (t_{c1} + 273.15)/(t_{h1} + 273.15)$ 4 效能 ε $\varepsilon = (t_{c2} - t_{c1})/(t_{h1} - t_{c1})$ 5 冷流体热流量 ϕ_c $\phi_c = q_{mc} c_{pc} (t_{c2} - t_{c1})$ 6 热流体热流量 ϕ_h $\phi_h = q_{mh} c_{ph} (t_{al} - t_{ad})$ 7 热平衡相对误差 $\Delta \phi$ $\Delta \phi = (\phi_h - \phi_c)/\phi_c \times 100\%$ 8 对数平均温差 Δt_m $\Delta t_m = (\Delta t_1 - \Delta t_1)/\ln(\Delta t_1/\Delta t_2)$ 9 测试总传热系数 k_{exp} $k_{exp} = (\phi_h + \phi_c)/(2A\Delta t_m)$ 10 雷诺数 Re $Re = \rho u d_e/\eta$ 11 热流体努塞尔数 Nu_h $Nu_h = c Re_h^n Pr_h^{0.3}$ 12 冷流体努塞尔数 Nu_e $Nu_e = c Re_e^n Pr_e^{0.4}$ 13 欧拉数 Eu $Eu = cRe^n$ 14 对流换热系数 $\alpha = Nu\lambda/d_e$ 15 计算总传热系数 λ_{eal} $\lambda_{eal} = 1/(1/\alpha_h + \delta/\lambda + 1/\alpha_e)$ 16 计算压力。 Δ_{eal} Δ_{eal} Δ_{eal}	序号	名 称	符号	计 算 式
3 冷、热流体进口温度比 τ $\tau = (t_{c1} + 273.15)/(t_{h1} + 273.15)$ 4 效能 ε $\varepsilon = (t_{c2} - t_{c1})/(t_{h1} - t_{c1})$ 5 冷流体热流量 ϕ_c $\phi_c = q_{mc} c_{pc} (t_{c2} - t_{c1})$ 6 热流体热流量 ϕ_h $\phi_h = q_{mh} c_{ph} (t_{h1} - t_{h2})$ 7 热平衡相对误差 $\Delta \phi$ $\Delta \phi = (\phi_h - \phi_e)/\phi_e \times 100\%$ 8 对数平均温差 Δt_m $\Delta t_m = (\Delta t_1 - \Delta t_2)/\ln(\Delta t_1/\Delta t_2)$ 9 测试总传热系数 k_{exp} k_{exp} $k_{exp} = (\phi_h + \phi_e)/(2A\Delta t_m)$ 10 雷诺数 Re $Re = \rho u d_e / \eta$ 11 热流体努塞尔数 Nu_h $Nu_h = c Re_h^n Pr_h^{0.3}$ 12 冷流体努塞尔数 Nu_e Nu_e $Eu = c Re_e^n$ $Pr_e^{0.4}$ 13 欧拉数 Eu $Eu = c Re^n$ 14 对流换热系数 α $\alpha = Nu \lambda / d_e$ 15 计算总传热系数 k_{cal} $k_{cal} = 1/(1/\alpha_h + \delta/\lambda + 1/\alpha_e)$	1	冷流体流速	$u_{\rm c}$	$u_{\rm c} = q_{\rm vc} / S_{\rm c}$
## 2015 ##	2	热流体流速	$u_{ m h}$	$u_{\rm h} = q_{ m vh} / S_{ m h}$
5 冷流体热流量 ϕ_c $\phi_c = q_{mc} c_{pc} (t_{c2} - t_{c1})$ 6 热流体热流量 ϕ_h $\phi_h = q_{mh} c_{ph} (t_{n1} - t_{n2})$ 7 热平衡相对误差 $\Delta \phi$ $\Delta \phi = (\phi_h - \phi_e)/\phi_e \times 100\%$ 8 对数平均温差 Δt_m $\Delta t_m = (\Delta t_1 - \Delta t_2)/\ln(\Delta t_1/\Delta t_2)$ 9 测试总传热系数 k_{exp} k_{exp} $k_{exp} = (\phi_h + \phi_e)/(2A\Delta t_m)$ 10 雷诺数 Re $Re = \rho u d_e / \eta$ 11 热流体努塞尔数 Nu_h $Nu_h = c Re_h^n P r_h^{0.3}$ 12 冷流体努塞尔数 Nu_e Nu_e $Eu = c Re_e^n$ $expands$ exp	3	冷、热流体进口温度比	τ	$\tau = (t_{\rm c1} + 273.15) / (t_{\rm h1} + 273.15)$
6 热流体热流量 ϕ_h $\phi_h = q_{mh} c_{ph} (t_{nl} - t_{12})$ 7 热平衡相对误差 $\Delta \phi$ $\Delta \phi = (\phi_h - \phi_c)/\phi_c \times 100\%$ 8 对数平均温差 Δt_m $\Delta t_m = (\Delta t_1 - \Delta t_2)/\ln(\Delta t_1/\Delta t_2)$ 9 测试总传热系数 k_{exp} k_{exp} $k_{exp} = (\phi_h + \phi_c)/(2A\Delta t_m)$ 10 雷诺数 Re $Re = \rho u d_e/\eta$ 11 热流体努塞尔数 Nu_h $Nu_h = c Re_h^n P r_h^{0.3}$ 12 冷流体努塞尔数 Nu_e $Nu_e = c Re_h^n P r_e^{0.4}$ 13 欧拉数 $Eu = c Re^n$ $\alpha = Nu \lambda/d_e$ 15 计算总传热系数 α $\alpha = Nu \lambda/d_e$	4	效能	${\cal E}$	$\varepsilon = (t_{c2} - t_{c1}) / (t_{h1} - t_{c1})$
7 热平衡相对误差 $\Delta \phi$ $\Delta \phi = (\phi_h^-\phi_e)/\phi_e \times 100\%$ 8 对数平均温差 Δt_m $\Delta t_m = (\Delta t_1^-\Delta t_2^-)/\ln(\Delta t_1^-/\Delta t_2^-)$ 9 测试总传热系数 $k_{\rm exp}$ $k_{\rm exp} = (\phi_h^-+\phi_e)/(2A\Delta t_m^-)$ 10 雷诺数 Re $Re = \rho u d_e/\eta$ 11 热流体努塞尔数 Nu_h $Nu_h = c Re_h^n Pr_h^{0.3}$ 12 冷流体努塞尔数 Nu_e $Nu_e = c Re_e^n Pr_e^{0.4}$ 13 欧拉数 Eu $Eu = c Re^n$ 14 对流换热系数 α $\alpha = Nu \lambda/d_e$ 15 计算总传热系数 α $\alpha = Nu \lambda/d_e$	5	冷流体热流量	$\phi_{\!\scriptscriptstyle m c}$	$\phi_{\rm c} = q_{\rm mc} c_{\rm pc} (t_{\rm c2} - t_{\rm c1})$
8 対数平均温差 $\Delta t_{\rm m} = (\Delta t_{\rm l} - \Delta t_{\rm l})/\ln(\Delta t_{\rm l}/\Delta t_{\rm l})$ 9 测试总传热系数 $k_{\rm exp}$ $k_{\rm exp} = (\phi_{\rm l} + \phi_{\rm c})/(2A\Delta t_{\rm m})$ 10 雷诺数 Re $Re = \rho u d_{\rm e}/\eta$ 11 热流体努塞尔数 $Nu_{\rm h}$ $Nu_{\rm h} = c Re_{\rm h}^{\rm n} Pr_{\rm h}^{0.3}$ 12 冷流体努塞尔数 $Nu_{\rm c}$ $Nu_{\rm c} = c Re_{\rm c}^{\rm n} Pr_{\rm c}^{0.4}$ 13 欧拉数 $Eu = c Re^{\rm n}$ 14 对流换热系数 $\alpha = Nu \lambda/d_{\rm c}$ 15 计算总传热系数 $k_{\rm cal}$ $k_{\rm cal} = 1/(1/\alpha_{\rm h} + \delta/\lambda + 1/\alpha_{\rm c})$	6	热流体热流量	$oldsymbol{\phi}_{ ext{h}}$	$\phi_{\rm h} = q_{\rm mh} c_{\rm ph} (t_{\rm hl} - t_{\rm h2})$
9 测试总传热系数 $k_{\rm exp}$ $k_{\rm exp} = (\phi_{\rm h} + \phi_{\rm c})/(2A\Delta t_{\rm m})$ 10 雷诺数 Re $Re = \rho u d_{\rm e}/\eta$ 11 热流体努塞尔数 $Nu_{\rm h}$ $Nu_{\rm h} = c Re_{\rm h}^{\rm n} Pr_{\rm h}^{0.3}$ 12 冷流体努塞尔数 $Nu_{\rm c}$ $Nu_{\rm c} = c Re_{\rm c}^{\rm n} Pr_{\rm c}^{0.4}$ 13 欧拉数 Eu $Eu = c Re^{\rm n}$ 14 对流换热系数 α $\alpha = Nu \lambda / d_{\rm c}$ 15 计算总传热系数 $k_{\rm cal}$ $k_{\rm cal} = 1/(1/\alpha_{\rm h} + \delta/\lambda + 1/\alpha_{\rm c})$	7	热平衡相对误差	$\Delta\phi$	$\Delta \phi = (\phi_{\rm h} - \phi_{\rm c}) / \phi_{\rm c} \times 100\%$
10	8	对数平均温差	$\Delta t_{_{ m m}}$	$\Delta t_{\rm m} = (\Delta t_1 - \Delta t_2) / \ln(\Delta t_1 / \Delta t_2)$
11 热流体努塞尔数 Nu_h $Nu_h = cRe_h^n Pr_h^{0.3}$ 12 冷流体努塞尔数 Nu_c $Nu_c = cRe_c^n Pr_c^{0.4}$ 13 欧拉数 Eu $Eu = cRe^n$ 14 对流换热系数 α $\alpha = Nu\lambda/d_e$ 15 计算总传热系数 k_{cal} $k_{cal} = 1/(1/\alpha_h + \delta/\lambda + 1/\alpha_c)$	9	测试总传热系数	$k_{ m exp}$	$k_{\rm exp} = (\phi_{\rm h} + \phi_{\rm c})/(2A\Delta t_{\rm m})$
12 冷流体努塞尔数 Nu_c $Nu_c = cRe_c^n Pr_c^{0.4}$ 13 欧拉数 Eu $Eu = cRe^n$ 14 对流换热系数 α $\alpha = Nu\lambda/d_c$ 15 计算总传热系数 k_{cal} $k_{cal} = 1/(1/\alpha_h + \delta/\lambda + 1/\alpha_c)$	10	雷诺数	Re	$Re = \rho u d_e / \eta$
13 欧拉数 $Eu = cRe^n$ 14 对流换热系数 α $\alpha = Nu\lambda/d_e$ 15 计算总传热系数 k_{cal} $k_{cal} = 1/(1/\alpha_h + \delta/\lambda + 1/\alpha_e)$	11	热流体努塞尔数	Nu _h	$Nu_h = c Re_h^n Pr_h^{0.3}$
14 対流换热系数 α $\alpha = Nu\lambda/d_e$ 15 计算总传热系数 k_{cal} $k_{cal} = 1/(1/\alpha_h + \delta/\lambda + 1/\alpha_e)$	12	冷流体努塞尔数	Nu_c	$Nu_{c} = c Re_{c}^{n} Pr_{c}^{0.4}$
15 计算总传热系数 $k_{\rm cal}$ $k_{\rm cal}=1/(1/\alpha_{\rm h}+\delta/\lambda+1/\alpha_{\rm c})$	13	欧拉数	Eu	$Eu = cRe^{n}$
Cai Cai n	14	对流换热系数	α	$\alpha = Nu\lambda / d_{\rm e}$
16 计算压力降 $\Delta p_{\rm cal}$ $\Delta p_{\rm cal} = Eu \rho u^2$	15	计算总传热系数	$k_{ m cal}$	$k_{\rm cal} = 1/(1/\alpha_{\rm h} + \delta/\lambda + 1/\alpha_{\rm c})$
	16	计算压力降	$\Delta p_{ m cal}$	$\Delta p_{\rm cal} = E u \rho u^2$

表 A-1 有关量计算式

注 A-1: 表 A-1 中角标 h、c 表示热、冷流体侧。

注 A-2: 表 A-1 中热流体努塞尔数、冷流体努塞尔数和欧拉数公式中的"c"和上角标"n"为常数,由实验数据进行拟合后所得。

A3.7 总传热系数与压力降计算

在热流体定性温度为 50° C、冷流体定性温度为 30° C,冷、热流体流速均为 0.5m·s^{-1} 的标准状态下,根据所建立的努塞尔数 Nu 的准则关联式、板片厚度及其热导率,计算出总传热系数 k_{cal} ,根据欧拉数 Eu 的准则关联式计算冷、热侧压力降 Δp_{cal} 。

A4 能效评价

A4.1 能效指标计算

板式热交换器的能效值的物理意义是消耗单位折合流动压降下所获得的总传

热系数,按式(A-2)计算:

$$EEI=k_{cal}/\nabla p^{03l}$$
 (A-2)

式中:

$$\nabla p = \omega_{c} \Delta p_{c,cal} / L_{c} + \omega_{h} \Delta p_{h,cal} / L_{h} , \text{ Pa·m}^{-1};$$
式中:

 $\omega_{\rm c}$ 、 $\omega_{\rm h}$ ——冷、热流体压力梯度的权重系数, $\omega_{\rm c}=\omega_{\rm h}=0.5$;

 $L_{\rm c}$ 、 $L_{\rm h}$ ——角孔纵向中心距, m;

 $\Delta p_{\rm c,cal}$ 、 $\Delta p_{\rm h,cal}$ ——按照 A3.7 确定的冷、热流体侧压力降,Pa。 $k_{\rm cal}$ ——按照 A3.7 确定的总传热系数,W·m $^{-2}$ ·K $^{-1}$ 。

A4.2 能效等级划分

根据板式热交换器行业能效水平分布,板式热交换器能效等级分为3级,见表 A-2。

产品能效等级	能效指标(EEI)下限
1 级	227
2级	191
3 级	168

表 A-2 能效等级

附件 B

报告编号:

能效测试与评价报告

产 品 名 称: XXXX 板式热交换器
型 号 规 格:
委托单位名称:
制造单位名称:
测 试 地 点:
测试评价日期:

(能效测试评价机构名称)

注意事项

- 1. 本报告是根据《热交换器能效测试与评价规则》(TSG R0010—2019)进行能效测试与评价所出具的报告。
- 2. 本报告应当由计算机打印输出,或者用钢笔、签字笔填写,字迹要工整,内容缺少、摘录或者部分复制、涂改无效。
- 3. 本报告无编制、审核、批准人员等签字,无测试评价机构的专用章或者公章无效。
 - 4. 测试与评价结果仅对被检测样品负责。
- 5. 本报告测试评价结论是在本报告所记载和描述的测试依据及测试条件下得出的。
- 6. 委托单位对本报告结论如有异议,请在收到报告书之日起 15 日内,向能效测试评价机构提出书面意见。
 - 7. 本报告一式两份,由测试评价机构和委托单位分别保存。

测试评价机构:

地 址:

电 话:

传 真:

邮政编码:

能效测试与评价报告

报告编号:

				-	人口	• —		
	制造单位名称							
	制造单位地址							
	测试地点							
	产品名称		夫	规格型号		2		
	产品编号		木	羊品编号				
	制造日期		Ų	则试类别	产品、	在用设	备测记	式)
	波纹深度	mm	Ü	皮纹角度				(°)
	混合角度	(°)	Ü	皮纹间距]	mm
44-15	板片长度	mm	木	返片宽度]	mm
技术参数	角孔直径	mm		板间距]	mm
少奴	板片厚度	mm	单本	返传热面积				m ²
	纵向中心距	mm	横	向中心距]	mm
	设计温度	°C	ť	设计压力			N	⁄ΙРа
测试 依据	《热交换器能效测试	与评价规则》(TS	SG R001	0—2019)及相	关标准			
测试结果	传热面两侧为水—水逆流运行, 热流体定性温度为 50℃, 冷流体定性温度为 30℃, 冷、热流体板间流速均为 0.5 m·s ⁻¹ 时: 1. 总传热系数: $k_{cal} = W \cdot m^{-2} \cdot K^{-1}$;							温
		测试人员(签字): 负责人(签字):						
	能效指标值(EEI)		能效等	级(相应级别)				
评价	评价人	」 员(签字):		 日期:				
结果		人(签字):		日	期:			
编制	刮:		(测f	式评价机构	专用章	5或者:	公章)	
审机		日期: 日期:						
批准		日期 :				年	月	日
1101	بلم •				, •			

把 件.	4户口.		
报告	細石	:	

B1 测试产品技术数据

序号	名 称	单位	委托单位提供	测试单位实测
1	板片波纹角度	(°)		
2	混合角度	(°)		
3	板片数	片		
4	板片厚度	mm		
5	板片波纹深度	mm		\wedge
6	板片波纹法向节距	mm		
7	夹紧尺寸	mm		λ
8	板间距	mm		(J)
9	当量直径	mm		
10	单片有效传热面积	m ²	f. Y	
11	总有效传热面积	m ²	17///>	
12	单侧流道截面积	m ²	4	
13	单侧流道总截面积	m ²		
14	流程组合	1		
15	接管形式			
16	角孔直径	mm		
17	角孔中心距(纵向)	mm		
18	角孔中心距(横向)	mm		
19	接管管径	_		
20	板片材料	_		
21	板片外形尺寸(长×宽)	mm		

B2 测试介质、流程和环境条件

B2.1 测试介质

传热面两侧介质为水-水。

B2.2 测试流程

传热面两侧介质逆流运行。冷、热流体采用并联式组合 1×N/1×n 的流动形式。 共 页 第 页

B2.3 测试环境条件

测试时, 当地大气压为____kPa, 环境温度为____°, 环境湿度为____。

B3 测量参数与仪表

B3.1 测量参数与测点布置

测量参数及测点布置见图 B-1。

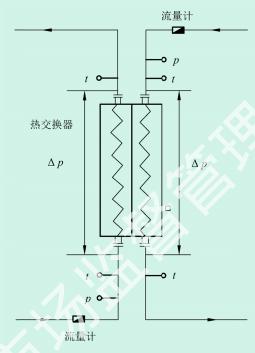


图 B-1 热交换器测量参数及测点布置

(示例图: t—温度, p—压力, Δp —压力差)

B3.2 测量仪表及精度

测量仪表及精度(格式)见表 B-1。

表 B-1 测量仪表及精度(示例)

测量项目	流量/	(m^3/h)	温度/℃		压力/MPa	压力差/kPa
精度(允差值)						
量程						
测试工位	冷侧	热侧	冷侧	热侧	冷/热侧	冷/热侧

共 页 第 页

扣件加口	
报告编号:	

B4 测试数据与结果

B4.1 测试数据

测试数据见表 B-2。

表 B-2 板式热交换器测试数据

							ни год год					
	热流体	冷流体	热流体	冷流体	热液	忙	冷泥	范体	热液	流体	冷泥	位
	板间	板间	体积	体积	进口	出口	进口	出口	进口	压降	进口	压降
序号	流速	流速	流量	流量	温度	温度	温度	温度	压力	厂厂产	压力	
	$u_{\rm h}$	$u_{\rm c}$	$q_{ m vh}$	$q_{ m vc}$	$t_{\rm h1}$	$t_{\rm h2}$	$t_{\rm c1}$	t_{c2}	$p_{ m h}$	$\Delta p_{\rm h}$	$p_{\rm c}$	$\Delta p_{ m c}$
	$\mathbf{m} \cdot \mathbf{s}^{-1}$	$\mathbf{m} \cdot \mathbf{s}^{-1}$	$m^3 \cdot h^{-1}$	$m^3 \cdot h^{-1}$	$^{\circ}\!$	$^{\circ}$	$^{\circ}\!$	$^{\circ}$	MPa	kPa	MPa	kPa
1	0.1	0.1										
2	0.2	0.2										
3	0.3	0.3					45	Y				
4	0.4	0.4										
5	0.5	0.5										
6	0.6	0.6										
7	0.7	0.7										
8	0.8	0.8										
9	0.9	0.9										
10	1.0	1.0										
11	0.9	0.9										
12	0.8	0.8	大									
13	0.7	0.7										
14	0.6	0.6										
15	0.5	0.5										
16	0.4	0.4										
17	0.3	0.3										
18	0.2	0.2										
19	0.1	0.1										
20	0.5	0.1										
21	0.5	0.2										

扣件炉口	
报告编号:	

表 B-2(续)

序号	热流体	冷流体	热流体	冷流体	热液	流体	冷流体		热流体		冷流体	
	板间 流速	板间 流速	体积 流量	体积 流量	进口 温度	出口温度	进口 温度	出口温度	进口 压力	压降	进口 压力	压降
	$u_{\rm h}$	$u_{\rm c}$	$q_{ m vh}$	$q_{ m vc}$	$t_{ m hl}$	$t_{\rm h2}$	$t_{\rm c1}$	t_{c2}	$p_{ m h}$	$\Delta p_{ m h}$	$p_{\rm c}$	$\Delta p_{ m c}$
	m⋅s ⁻¹	m⋅s ⁻¹	$m^3 \cdot h^{-1}$	$m^3 \cdot h^{-1}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	MPa	kPa	MPa	kPa
22	0.5	0.3										
23	0.5	0.4										
24	0.5	0.5										
25	0.5	0.6										
26	0.5	0.7										
27	0.5	0.8					1					
28	0.5	0.9										
29	0.5	1.0				.4						
30	0.5	0.9										
31	0.5	0.8										
32	0.5	0.7		A								
33	0.5	0.6		XK								
34	0.5	0.5	X	λ								
35	0.5	0.4	,((
36	0.5	0.3	<u>(上)</u>									
37	0.5	0.2										
38	0.5	0.1										

报告编号:

B4.2 测试结果

$$Nu_{\rm h} = cRe_{\rm h}^{\rm n}Pr_{\rm h}^{0.3}$$

 $(< Re_{\rm h} <)$
 $Nu_{\rm c} = cRe_{\rm c}^{\rm n}Pr_{\rm c}^{0.4}$
 $(< Re_{\rm c} <)$
 $Eu_{\rm h} = cRe_{\rm h}^{\rm n}$
 $(< Re_{\rm h} <)$
 $Eu_{\rm c} = cRe_{\rm c}^{\rm n}$
 $(< Re_{\rm c} <)$

注:c与上角标 n 为常数,由实验数据进行拟合后所得。

B4.3 测试曲线

B4.3.1 传热曲线

总传热系数与流速的测试数据及关联式曲线(格式)见图 B-2。

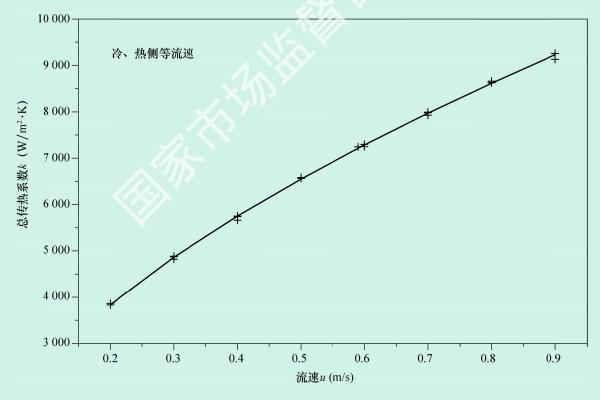


图 B-2 总传热系数与流速的测试数据及关联式曲线(格式)

共 页 第 页

报告编号:

B4.3.2 流体阻力曲线

压力降与流速的测试数据及关联式曲线(格式)见图 B-3。

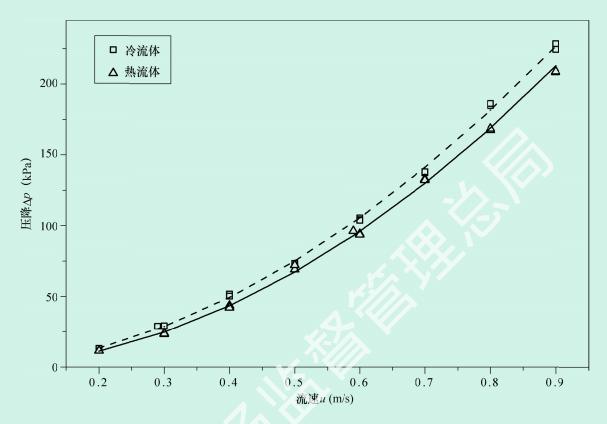


图 B-3 压力降与流速的测试数据及关联式曲线(格式)

B4.4 能效指标计算过程

B4.4.1 计算冷、热流体雷诺数

$$Re_{c} = \frac{u_{c}d_{e}\rho_{c}}{\mu_{c}} =$$
 , $Re_{h} = \frac{u_{h}d_{e}\rho_{h}}{\mu_{h}} =$

B4.4.2 计算总传热系数

$$Nu_{h} = Re_{h}^{n} P r_{h}^{0.3} = , \quad \alpha_{h} = \frac{Nu_{h} \lambda_{h}}{d_{e}} =$$

$$Nu_{c} = cRe_{c}^{n} P r_{c}^{0.4} = , \quad \alpha_{c} = \frac{Nu_{c} \lambda_{c}}{d_{e}} =$$

$$k_{cal} = \frac{1}{\frac{1}{\alpha_{h}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{c}}} =$$

共 页 第 页

B4. 4. 3 计算压力梯度

$$\begin{split} Eu_{\rm h} &= cRe_{\rm h}^{\rm n} = \qquad , \quad \Delta p_{\rm h,cal} = Eu_{\rm h}\rho_{\rm h}u_{\rm h}^2 = \\ Eu_{\rm c} &= cRe_{\rm c}^{\rm n} = \qquad , \quad \Delta p_{\rm c,cal} = Eu_{\rm c}\rho_{\rm c}u_{\rm c}^2 = \\ \nabla p &= \omega_{\rm c}\Delta p_{\rm c,cal} / L_{\rm c} + \omega_{\rm h}\Delta p_{\rm h,cal} / L_{\rm h} = \end{split}$$

B4. 4. 4 计算能效指标

$$EEI = k_{eal} / \nabla p^{0.31} =$$